• Login/Register
  • Alphabetic Index : A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    Search β):

    * Cube *


    (Wikipedia) - Cube This article is about the geometric shape. For other uses, see Cube (disambiguation). Regular Hexahedron
    (Click here for rotating model)
    Type Platonic solid
    Elements F = 6, E = 12 V = 8 (χ = 2)
    Faces by sides 6{4}
    Conway notation C
    Schläfli symbols {4,3}
    {4}×{}, {}×{}×{}
    Wythoff symbol 3 | 2 4
    Coxeter diagram
    Symmetry Oh, BC3, , (*432)
    Rotation group O, +, (432)
    References U06, C18, W3
    Properties Regular convex zonohedron
    Dihedral angle 90°
    4.4.4 (Vertex figure) Octahedron (dual polyhedron)

    In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex.

    The cube is the only regular hexahedron and is one of the five Platonic solids.

    The cube is also a square parallelepiped, an equilateral cuboid and a right rhombohedron. It is a regular square prism in three orientations, and a trigonal trapezohedron in four orientations.

    The cube is dual to the octahedron. It has cubical or octahedral symmetry.


    Orthogonal projections

    The cube has four special orthogonal projections, centered, on a vertex, edges, face and normal to its vertex figure. The first and third correspond to the A2 and B2 Coxeter planes.

    Orthogonal projections Centered by Face Vertex Coxeter planes Projective symmetry Tilted views
    B2 A2
    Spherical tiling

    The Cube also be represented as a spherical tiling, and projected onto the plane via a stereographic projection. This projection is conformal, preserving angles but not areas or lengths. Straight lines on the sphere are projected as circular arcs on the plane.

    orthographic projection Stereographic projection
    Cartesian coordinates

    For a cube centered at the origin, with edges parallel to the axes and with an edge length of 2, the Cartesian coordinates of the vertices are

    (±1, ±1, ±1)

    while the interior consists of all points (x0, x1, x2) with −1 < xi < 1.

    Equation in R3

    In analytic geometry, a cube''s surface with center (x0, y0, z0) and edge length of 2a is the locus of all points (x, y, z) such that

    A direct formula for the surface without using limits is:


    For a cube of edge length ,

    surface area
    face diagonal
    space diagonal
    radius of circumscribed sphere
    radius of sphere tangent to edges
    radius of inscribed sphere
    angles between faces (in radians)

    As the volume of a cube is the third power of its sides , third powers are called cubes, by analogy with squares and second powers.

    A cube has the largest volume among cuboids (rectangular boxes) with a given surface area. Also, a cube has the largest volume among cuboids with the same total linear size (length+width+height).

    Uniform colorings and symmetryOctahedral symmetry tree

    The cube has three uniform colorings, named by the colors of the square faces around each vertex: 111, 112, 123.

    The cube has three classes of symmetry, which can be represented by vertex-transitive coloring the faces. The highest octahedral symmetry Oh has all the faces the same color. The dihedral symmetry D4h comes from the cube being a prism, with all four sides being the same color. The lowest symmetry D2h is also a prismatic symmetry, with sides alternating colors, so there are three colors, paired by opposite sides. Each symmetry form has a different Wythoff symbol.

    Name Regular hexahedron Square prism Rectangular cuboid Rhombic prism Trigonal trapezohedron Coxeter diagram Schläfli symbol Wythoff symbol Symmetry Symmetry order Image (uniform coloring)
    {4,3} {4}×{ } rr{4,2} s2{2,4} { }3 tr{2,2} { }×2{ }
    3 | 4 2 4 2 | 2 2 2 2 |
    Oh (*432) D4h (*422) D2d (2*2) D2h (*222) D3d (2*3)
    24 16 8 8 12
    (111) (112) (112) (123) (112) (111), (112)
    Geometric relationsThe 11 nets of the cube.These familiar six-sided dice are cube-shaped.

    A cube has eleven nets (one shown above): that is, there are eleven ways to flatten a hollow cube by cutting seven edges. To color the cube so that no two adjacent faces have the same color, one would need at least three colors.

    The cube is the cell of the only regular tiling of three-dimensional Euclidean space. It is also unique among the Platonic solids in having faces with an even number of sides and, consequently, it is the only member of that group that is a zonohedron (every face has point symmetry).

    The cube can be cut into six identical square pyramids. If these square pyramids are then attached to the faces of a second cube, a rhombic dodecahedron is obtained (with pairs of coplanar triangles combined into rhombic faces.)

    Other dimensions

    The analogue of a cube in four-dimensional Euclidean space has a special name—a tesseract or hypercube. More properly, a hypercube (or n-dimensional cube or simply n-cube) is the analogue of the cube in n-dimensional Euclidean space and a tesseract is the order-4 hypercube. A hypercube is also called a measure polytope.

    There are analogues of the cube in lower dimensions too: a point in dimension 0, a segment in one dimension and a square in two dimensions.

    Related polyhedraThe dual of a cube is an octahedron.The hemicube is the 2-to-1 quotient of the cube.

    The quotient of the cube by the antipodal map yields a projective polyhedron, the hemicube.

    If the original cube has edge length 1, its dual polyhedron (an octahedron) has edge length .

    The cube is a special case in various classes of general polyhedra:

    Name Equal edge-lengths? Equal angles? Right angles?
    Cube Yes Yes Yes
    Rhombohedron Yes Yes No
    Cuboid No Yes Yes
    Parallelepiped No Yes No
    quadrilaterally faced hexahedron No No No

    The vertices of a cube can be grouped into two groups of four, each forming a regular tetrahedron; more generally this is referred to as a demicube. These two together form a regular compound, the stella octangula. The intersection of the two forms a regular octahedron. The symmetries of a regular tetrahedron correspond to those of a cube which map each tetrahedron to itself; the other symmetries of the cube map the two to each other.

    One such regular tetrahedron has a volume of 1⁄3 of that of the cube. The remaining space consists of four equal irregular tetrahedra with a volume of 1⁄6 of that of the cube, each.

    The rectified cube is the cuboctahedron. If smaller corners are cut off we get a polyhedron with six octagonal faces and eight triangular ones. In particular we can get regular octagons (truncated cube). The rhombicuboctahedron is obtained by cutting off both corners and edges to the correct amount.

    A cube can be inscribed in a dodecahedron so that each vertex of the cube is a vertex of the dodecahedron and each edge is a diagonal of one of the dodecahedron''s faces; taking all such cubes gives rise to the regular compound of five cubes.

    If two opposite corners of a cube are truncated at the depth of the three vertices directly connected to them, an irregular octahedron is obtained. Eight of these irregular octahedra can be attached to the triangular faces of a regular octahedron to obtain the cuboctahedron.

    The cube is topologically related to a series of spherical polyhedra and tilings with order-3 vertex figures.

    Spherical Polyhedra Polyhedra Euclidean Hyperbolic tilings
    {2,3} {3,3} {4,3} {5,3} {6,3} {7,3} {8,3} ... (∞,3}

    The cuboctahedron is one of a family of uniform polyhedra related to the cube and regular octahedron.

    Uniform octahedral polyhedra Symmetry: , (*432) + (432) = (*332) (3*2) Duals to uniform polyhedra
    {4,3} t{4,3} r{4,3} r{31,1} t{3,4} t{31,1} {3,4} {31,1} rr{4,3} s2{3,4} tr{4,3} sr{4,3} h{4,3} {3,3} h2{4,3} t{3,3} s{3,4} s{31,1}
    = = = = or = or =
    V43 V3.82 V(3.4)2 V4.62 V34 V3.43 V4.6.8 V34.4 V33 V3.62 V35

    The cube is topologically related as a part of sequence of regular tilings, extending into the hyperbolic plane: {4,p}, p=3,4,5...

    Finite Euclidean Compact hyperbolic Paracompact
    {4,3} {4,4} {4,5} {4,6} {4,7} {4,8}... {4,∞}

    With dihedral symmetry, Dih4, the cube is topologically related in a series of uniform polyhedra and tilings 4.2n.2n, extending into the hyperbolic plane:

    Dimensional family of truncated polyhedra and tilings: 4.2n.2n Symmetry *n42 Spherical Euclidean Compact hyperbolic Paracompact *242 D4h *342 Oh *442 P4m *542 *642 *742 *842 ... *∞42 Truncated figures Coxeter Schläflit{2,4}t{3,4}t{4,4}t{5,4}t{6,4}t{7,4}t{8,4}t{4,∞} Uniform dual figures n-kis figures Coxeter
    4.4.4 4.6.6 4.8.8 4.10.10 4.12.12 4.14.14 4.16.16 4.∞.∞
    V4.4.4 V4.6.6 V4.8.8 V4.10.10 V4.12.12 V4.14.14 V4.16.16 V4.∞.∞

    All these figures have octahedral symmetry.

    The cube is a part of a sequence of rhombic polyhedra and tilings with Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are squares.

    Dimensional family of quasiregular polyhedra and tilings: 3.n.3.n Symmetry *n32 Spherical Euclidean Compact hyperbolic Paracompact Noncompact *332 Td *432 Oh *532 Ih *632 p6m *732 *832 ... *∞32   Quasiregular figures configuration Coxeter diagram Dual (rhombic) figures configuration Coxeter diagram 3.∞.3.∞ 3.∞.3.∞
    V3.3.3.3 V3.4.3.4 V3.5.3.5 V3.6.3.6 V3.7.3.7 V3.8.3.8 V3.∞.3.∞

    The cube is a square prism:

    Family of uniform prisms Symmetry 3 4 5 6 7 8 9 10 11 12 Image As spherical polyhedra Image

    As a trigonal trapezohedron, the cube is related to the hexagonal dihedral symmetry family.

    Uniform hexagonal dihedral spherical polyhedra Symmetry: , (*622) +, (622) , (322) , (2*3) Uniform duals
    {6,2} t{6,2} r{6,2} 2t{6,2}=t{2,6} 2r{6,2}={2,6} rr{6,2} tr{6,2} sr{6,2} h{6,2} s{2,6}
    V62 V122 V62 V4.4.6 V26 V4.4.6 V4.4.12 V3.3.3.6 V32 V3.3.3.3
    Regular and uniform compounds of cubes
    Compound of three cubes Compound of five cubes
    In uniform honeycombs and polychora

    It is an element of 9 of 28 convex uniform honeycombs:

    Cubic honeycomb Truncated square prismatic honeycomb Snub square prismatic honeycomb Elongated triangular prismatic honeycomb Gyroelongated triangular prismatic honeycomb
    Cantellated cubic honeycomb Cantitruncated cubic honeycomb Runcitruncated cubic honeycomb Runcinated alternated cubic honeycomb

    It is also an element of five four-dimensional uniform polychora:

    Tesseract Cantellated 16-cell Runcinated tesseract Cantitruncated 16-cell Runcitruncated 16-cell
    Combinatorial cubes

    A different kind of cube is the cube graph, which is the graph of vertices and edges of the geometrical cube. It is a special case of the hypercube graph.

    An extension is the three dimensional k-ary Hamming graph, which for k = 2 is the cube graph. Graphs of this sort occur in the theory of parallel processing in computers.


    See also items containing : Cube

    Add definition or comments on Cube

    Your Name / Alias:
    Definition / Comments
    neutral points of view
    Source / SEO Backlink:
    Anti-Spam Check
    Enter text above
    Upon approval, your definition will be listed under: Cube

    Happy Summer Sale

    Home About us / Contact    Products    Services    Iranian History Today    Top Iran Links    Iranian B2B Web Directory    Historical Glossary
    Copyright @ 2004-2016 fouman.com All Rights Iranian